3.822 \(\int \frac{\sqrt{\cot (c+d x)}}{a+b \tan (c+d x)} \, dx\)

Optimal. Leaf size=232 \[ -\frac{(a+b) \log \left (\cot (c+d x)-\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{2 \sqrt{2} d \left (a^2+b^2\right )}+\frac{(a+b) \log \left (\cot (c+d x)+\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{2 \sqrt{2} d \left (a^2+b^2\right )}-\frac{2 b^{3/2} \tan ^{-1}\left (\frac{\sqrt{a} \sqrt{\cot (c+d x)}}{\sqrt{b}}\right )}{\sqrt{a} d \left (a^2+b^2\right )}+\frac{(a-b) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} d \left (a^2+b^2\right )}-\frac{(a-b) \tan ^{-1}\left (\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{\sqrt{2} d \left (a^2+b^2\right )} \]

[Out]

((a - b)*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d) - ((a - b)*ArcTan[1 + Sqrt[2]*Sqrt[Co
t[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d) - (2*b^(3/2)*ArcTan[(Sqrt[a]*Sqrt[Cot[c + d*x]])/Sqrt[b]])/(Sqrt[a]*(a^2
 + b^2)*d) - ((a + b)*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d) + ((a + b)
*Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d)

________________________________________________________________________________________

Rubi [A]  time = 0.300586, antiderivative size = 232, normalized size of antiderivative = 1., number of steps used = 15, number of rules used = 12, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.522, Rules used = {3673, 3573, 3534, 1168, 1162, 617, 204, 1165, 628, 3634, 63, 205} \[ -\frac{(a+b) \log \left (\cot (c+d x)-\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{2 \sqrt{2} d \left (a^2+b^2\right )}+\frac{(a+b) \log \left (\cot (c+d x)+\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{2 \sqrt{2} d \left (a^2+b^2\right )}-\frac{2 b^{3/2} \tan ^{-1}\left (\frac{\sqrt{a} \sqrt{\cot (c+d x)}}{\sqrt{b}}\right )}{\sqrt{a} d \left (a^2+b^2\right )}+\frac{(a-b) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} d \left (a^2+b^2\right )}-\frac{(a-b) \tan ^{-1}\left (\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{\sqrt{2} d \left (a^2+b^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cot[c + d*x]]/(a + b*Tan[c + d*x]),x]

[Out]

((a - b)*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d) - ((a - b)*ArcTan[1 + Sqrt[2]*Sqrt[Co
t[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d) - (2*b^(3/2)*ArcTan[(Sqrt[a]*Sqrt[Cot[c + d*x]])/Sqrt[b]])/(Sqrt[a]*(a^2
 + b^2)*d) - ((a + b)*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d) + ((a + b)
*Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d)

Rule 3673

Int[(cot[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Cot[e + f*x])^(m - n*p)*(b + a*Cot[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3573

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(3/2)/((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1
/(c^2 + d^2), Int[Simp[a^2*c - b^2*c + 2*a*b*d + (2*a*b*c - a^2*d + b^2*d)*Tan[e + f*x], x]/Sqrt[a + b*Tan[e +
 f*x]], x], x] + Dist[(b*c - a*d)^2/(c^2 + d^2), Int[(1 + Tan[e + f*x]^2)/(Sqrt[a + b*Tan[e + f*x]]*(c + d*Tan
[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2
, 0]

Rule 3534

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{\cot (c+d x)}}{a+b \tan (c+d x)} \, dx &=\int \frac{\cot ^{\frac{3}{2}}(c+d x)}{b+a \cot (c+d x)} \, dx\\ &=\frac{\int \frac{-b+a \cot (c+d x)}{\sqrt{\cot (c+d x)}} \, dx}{a^2+b^2}+\frac{b^2 \int \frac{1+\cot ^2(c+d x)}{\sqrt{\cot (c+d x)} (b+a \cot (c+d x))} \, dx}{a^2+b^2}\\ &=\frac{2 \operatorname{Subst}\left (\int \frac{b-a x^2}{1+x^4} \, dx,x,\sqrt{\cot (c+d x)}\right )}{\left (a^2+b^2\right ) d}+\frac{b^2 \operatorname{Subst}\left (\int \frac{1}{\sqrt{-x} (b-a x)} \, dx,x,-\cot (c+d x)\right )}{\left (a^2+b^2\right ) d}\\ &=-\frac{(a-b) \operatorname{Subst}\left (\int \frac{1+x^2}{1+x^4} \, dx,x,\sqrt{\cot (c+d x)}\right )}{\left (a^2+b^2\right ) d}-\frac{\left (2 b^2\right ) \operatorname{Subst}\left (\int \frac{1}{b+a x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{\left (a^2+b^2\right ) d}+\frac{(a+b) \operatorname{Subst}\left (\int \frac{1-x^2}{1+x^4} \, dx,x,\sqrt{\cot (c+d x)}\right )}{\left (a^2+b^2\right ) d}\\ &=-\frac{2 b^{3/2} \tan ^{-1}\left (\frac{\sqrt{a} \sqrt{\cot (c+d x)}}{\sqrt{b}}\right )}{\sqrt{a} \left (a^2+b^2\right ) d}-\frac{(a-b) \operatorname{Subst}\left (\int \frac{1}{1-\sqrt{2} x+x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{2 \left (a^2+b^2\right ) d}-\frac{(a-b) \operatorname{Subst}\left (\int \frac{1}{1+\sqrt{2} x+x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{2 \left (a^2+b^2\right ) d}-\frac{(a+b) \operatorname{Subst}\left (\int \frac{\sqrt{2}+2 x}{-1-\sqrt{2} x-x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}-\frac{(a+b) \operatorname{Subst}\left (\int \frac{\sqrt{2}-2 x}{-1+\sqrt{2} x-x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}\\ &=-\frac{2 b^{3/2} \tan ^{-1}\left (\frac{\sqrt{a} \sqrt{\cot (c+d x)}}{\sqrt{b}}\right )}{\sqrt{a} \left (a^2+b^2\right ) d}-\frac{(a+b) \log \left (1-\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}+\frac{(a+b) \log \left (1+\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}-\frac{(a-b) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} \left (a^2+b^2\right ) d}+\frac{(a-b) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} \left (a^2+b^2\right ) d}\\ &=\frac{(a-b) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} \left (a^2+b^2\right ) d}-\frac{(a-b) \tan ^{-1}\left (1+\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} \left (a^2+b^2\right ) d}-\frac{2 b^{3/2} \tan ^{-1}\left (\frac{\sqrt{a} \sqrt{\cot (c+d x)}}{\sqrt{b}}\right )}{\sqrt{a} \left (a^2+b^2\right ) d}-\frac{(a+b) \log \left (1-\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}+\frac{(a+b) \log \left (1+\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}\\ \end{align*}

Mathematica [C]  time = 0.216891, size = 227, normalized size = 0.98 \[ \frac{-8 a^{3/2} \cot ^{\frac{3}{2}}(c+d x) \, _2F_1\left (\frac{3}{4},1;\frac{7}{4};-\cot ^2(c+d x)\right )-3 b \left (8 \sqrt{b} \tan ^{-1}\left (\frac{\sqrt{a} \sqrt{\cot (c+d x)}}{\sqrt{b}}\right )+\sqrt{2} \sqrt{a} \log \left (\cot (c+d x)-\sqrt{2} \sqrt{\cot (c+d x)}+1\right )-\sqrt{2} \sqrt{a} \log \left (\cot (c+d x)+\sqrt{2} \sqrt{\cot (c+d x)}+1\right )+2 \sqrt{2} \sqrt{a} \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )-2 \sqrt{2} \sqrt{a} \tan ^{-1}\left (\sqrt{2} \sqrt{\cot (c+d x)}+1\right )\right )}{12 \sqrt{a} d \left (a^2+b^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Cot[c + d*x]]/(a + b*Tan[c + d*x]),x]

[Out]

(-8*a^(3/2)*Cot[c + d*x]^(3/2)*Hypergeometric2F1[3/4, 1, 7/4, -Cot[c + d*x]^2] - 3*b*(2*Sqrt[2]*Sqrt[a]*ArcTan
[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]] - 2*Sqrt[2]*Sqrt[a]*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]] + 8*Sqrt[b]*ArcTan
[(Sqrt[a]*Sqrt[Cot[c + d*x]])/Sqrt[b]] + Sqrt[2]*Sqrt[a]*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]] -
Sqrt[2]*Sqrt[a]*Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]]))/(12*Sqrt[a]*(a^2 + b^2)*d)

________________________________________________________________________________________

Maple [C]  time = 0.299, size = 2278, normalized size = 9.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(1/2)/(a+b*tan(d*x+c)),x)

[Out]

-1/2/d*2^(1/2)/a/(a^2+b^2)^(3/2)/(a+b+(a^2+b^2)^(1/2))/(-b+(a^2+b^2)^(1/2)-a)*(cos(d*x+c)/sin(d*x+c))^(1/2)*(c
os(d*x+c)-1)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(
d*x+c)-1)/sin(d*x+c))^(1/2)*(EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(
a^2+b^2)^(3/2)*a^2-EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^(
1/2)*a^4+EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(3/2)*a^2-E
llipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a^4-2*EllipticP
i((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),a/(a+b+(a^2+b^2)^(1/2)),1/2*2^(1/2))*a^3*b^2-2*EllipticPi((-(c
os(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),a/(a+b+(a^2+b^2)^(1/2)),1/2*2^(1/2))*a*b^4+2*EllipticPi((-(cos(d*x+c
)-1-sin(d*x+c))/sin(d*x+c))^(1/2),-a/(-b+(a^2+b^2)^(1/2)-a),1/2*2^(1/2))*a^3*b^2+2*EllipticPi((-(cos(d*x+c)-1-
sin(d*x+c))/sin(d*x+c))^(1/2),-a/(-b+(a^2+b^2)^(1/2)-a),1/2*2^(1/2))*a*b^4-2*EllipticF((-(cos(d*x+c)-1-sin(d*x
+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*(a^2+b^2)^(3/2)*a^2-2*EllipticF((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1
/2),1/2*2^(1/2))*(a^2+b^2)^(3/2)*b^2+2*EllipticF((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*(a
^2+b^2)^(1/2)*a^4+2*EllipticF((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*(a^2+b^2)^(1/2)*b^4-3
*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a^2*b^2-Ellip
ticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a*b^3+EllipticPi((-
(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(3/2)*a*b-3*EllipticPi((-(cos(d*x
+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a^3*b-3*EllipticPi((-(cos(d*x+c)-1-
sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a^2*b^2-EllipticPi((-(cos(d*x+c)-1-sin(d*
x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a*b^3+2*(a^2+b^2)^(1/2)*EllipticPi((-(cos(d*x+c
)-1-sin(d*x+c))/sin(d*x+c))^(1/2),a/(a+b+(a^2+b^2)^(1/2)),1/2*2^(1/2))*a^2*b^2-2*(a^2+b^2)^(1/2)*EllipticPi((-
(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),a/(a+b+(a^2+b^2)^(1/2)),1/2*2^(1/2))*a*b^3+2*(a^2+b^2)^(1/2)*Ellip
ticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),-a/(-b+(a^2+b^2)^(1/2)-a),1/2*2^(1/2))*a^2*b^2-2*(a^2+b^2)
^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),-a/(-b+(a^2+b^2)^(1/2)-a),1/2*2^(1/2))*a*b^3+I
*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^(3/2)*a^2+I*Ellipti
cPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a^4-I*EllipticPi((-(c
os(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(3/2)*a^2-I*EllipticPi((-(cos(d*x+c
)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a^4+4*EllipticF((-(cos(d*x+c)-1-sin(d
*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*(a^2+b^2)^(1/2)*a^3*b+4*EllipticF((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c)
)^(1/2),1/2*2^(1/2))*(a^2+b^2)^(1/2)*a^2*b^2+4*EllipticF((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(
1/2))*(a^2+b^2)^(1/2)*a*b^3+EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a
^2+b^2)^(3/2)*a*b-3*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^
(1/2)*a^3*b-I*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^(3/2)*
a*b-I*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a^3*b-I*
EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a^2*b^2-I*Elli
pticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a*b^3+I*EllipticPi
((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(3/2)*a*b+I*EllipticPi((-(cos(
d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a^2*b^2+I*EllipticPi((-(cos(d*x+
c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a*b^3+I*EllipticPi((-(cos(d*x+c)-1-s
in(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a^3*b)*(cos(d*x+c)+1)^2/sin(d*x+c)^2/cos(d
*x+c)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)/(a+b*tan(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)/(a+b*tan(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\cot{\left (c + d x \right )}}}{a + b \tan{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(1/2)/(a+b*tan(d*x+c)),x)

[Out]

Integral(sqrt(cot(c + d*x))/(a + b*tan(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\cot \left (d x + c\right )}}{b \tan \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)/(a+b*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate(sqrt(cot(d*x + c))/(b*tan(d*x + c) + a), x)